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ABSTRACT
The growing health and eco-
nomic burden posed by food-
borne pathogens has stimulated
global interest in the develop-
ment of safe, affordable, effective
and environmentally-sustainable
irrigation water treatment tech-
nologies. This review critically
compares the potential of exist-
ing and emerging methods for
disinfection of irrigation water to
reduce pathogenic microbial
loads on high-risk vegetables and
minimally processed fresh pro-
duce. We explore electrochemical
disinfection and electrolyzed oxi-
dizing water as alternatives to
traditional chlorination, and iden-
tify hydrodynamic cavitation as
an emerging disinfection strategy
worthy of further investigation in this context. In addition, we assess the state of the
knowledge regarding the impact of current water sanitation strategies on the ecological
dynamics of plant and soil microbes and the potential induction of viable but noncul-
turable cells. Increased research in these areas could translate into substantial improve-
ment in the overall quality and value of fresh produce, while maintaining
environmentally-sustainable irrigation water usage.
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1. Introduction

Crop agro-ecosystems are at the heart of the food–energy–water nexus,
accounting for �70% of total freshwater withdrawal in the world (Food
and Agriculture Organization of the United Nations (FAO), 2015). As an
example, irrigated agriculture accounted for 58% of all water use in
Australia in 2015–16 (ABS, 2017), and projected agricultural water demand
is set to increase by 50% by 2050 (AWA, 2017). The increasing demand for
water to support food production is a global trend that is significantly exac-
erbating pressure on water resources. Thus, alternative irrigation water
sources are increasingly sought, and the quality and safety of those supplies
must be ensured to safeguard future water and food safety.

1.1. Microbiological contamination of irrigation water and pathogen transfer
to food

Irrigation water can be obtained from a range of water sources and the
potential for microbiological contamination needs to be carefully consid-
ered. Table 1 lists the range of available water sources for irrigation and
their relative risk of microbial contamination. In the case of irrigated food
crops, particularly minimally processed foods such as lettuce, spinach, pars-
ley and other leafy greens, opportunistic and human pathogens are of par-
ticular concern. Despite increasing efforts to improve sanitation, outbreaks
linked to microbial contamination of minimally processed foods continue
to occur around the world. In some instances, these outbreaks have been
associated with pathogens that are uncommon in these foods, for example,
Salmonella spp. and Listeria monocytogenes in cantaloupes, prepacked let-
tuce, and baby spinach leaves (FSANZ, 2016; Zhu, Gooneratne, & Hussain,
2017). Pre-harvest water supplies (i.e., irrigation water) and postharvest
water (i.e., washing water) have previously been identified as the main
sources of contamination in produce associated with illness (FSANZ, 2011),
and the growing use of whole genome sequencing in outbreak investiga-
tions is providing increasing evidence for the role of contaminated irriga-
tion water in pathogen outbreaks (Hoelzer, Switt, Wiedmann, & Boor,
2018). It is clear that contaminated irrigation water can transfer pathogens
to edible produce (Jongman & Korsten, 2017; Markland, Ingram, Kniel, &
Sharma, 2017) and leafy greens are especially vulnerable to contamination
with opportunistic human pathogens because they have large surface areas,
are often grown in close proximity to soil, are irrigated intensively, and are
mostly consumed raw (De Keuckelaere et al., 2015).

Given the above, it is evident that in some settings effective sanitation of
irrigation water is paramount in ensuring the safety of edible produce.
Guideline values for pathogens in irrigation water have historically been

2 C. E. DANDIE ET AL.
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framed around fecal contamination and associated indicators (i.e., fecal
coliforms), with the WHO guideline value of �1,000 colony forming units
of fecal coliforms per 100ml in wastewater for irrigation (World Health
Organization (WHO), 1989). Other guidelines might be more specific and
restrictive, specifying E. coli rather than coliforms (i.e., <1 E. coli per
100ml of recycled wastewater; E.P.H.C., 2006) or targeting other pathogens
(absence of Salmonella required in 100% of samples in recent EU legisla-
tion; European Commission, 2019). The impetus or trigger for irrigation
water treatment should be derived from relevant local guideline values and
microbial risk assessment of the potential pathogen exposure from conta-
minated crops (Uyttendaele et al., 2015).
The intention of this review is to critically assess the literature relating to

existing methods for disinfection of irrigation water for food crops. The
information presented is mainly focused on bacterial pathogens, whilst
acknowledging that there are substantial disease burdens associated with
other pathogens such as viruses, protozoa and helminths (Ram�ırez-Castillo
et al., 2015). Where there is limited information on the application of treat-
ments specifically to irrigation water, we have drawn on literature assessing
the application of sanitation technologies in other scenarios and their
potential for adoption for irrigation water treatment.

1.2. Human health effects of contaminated fresh produce and mechanisms
of pathogen contamination

There are substantial human health effects of contaminated fresh pro-
duce—for instance, between 2004 and 2013, over one third of foodborne
illnesses in the USA were from the consumption of contaminated fresh
produce (Fischer, Bourne, & Plunkett, 2015). Considering that the World
Health Organization (WHO) reported a global burden of 600 million cases
of foodborne illness in 2010 (420,000 resulting in death), the importance of
water sanitation during the pre- and postproduction of fresh produce
should not be ignored (World Health Organization (WHO), 2015b).
Pathogen survival on plant surfaces has been clearly demonstrated, espe-

cially in biofilms, as has the internalization of pathogens into plant tissues
– i.e., endophytes (Berg, Eberl, & Hartmann, 2005; Berg et al., 2013;
Hardoim et al., 2015; Lim, Lee, & Heu, 2014). In fact, many opportunistic
human pathogens colonizing fresh produce have an endophytic lifestyle,
using vegetables as an alternative host to survive in the environment and as
a vehicle to colonize human and animal hosts once ingested (Mendes,
Garbeva, & Raaijmakers, 2013). Critically, the endophytic interaction leads
to difficulties for postharvest decontamination of fresh produce (Berger
et al., 2010). Therefore, while treatment of irrigation water might be

4 C. E. DANDIE ET AL.



effective in reducing the incidence of pathogen contamination through dir-
ect transfer of pathogens from irrigation water to plant surfaces and soil,
changes in agricultural management practices might also be required to
reduce the potential for endophytic pathogen colonization from contami-
nated soil and/or manure-based fertilizers.
In addition to the general risks to human health associated with patho-

gen contamination in food, the heightened risks posed by antimicrobial
resistant microorganisms and antimicrobial resistance genes, particularly
when associated with pathogenic microorganisms, is also of key relevance
(Thanner, Drissner, & Walsh, 2016). Antimicrobial resistance is a major
concern worldwide and is recognized by the WHO as a “global health
security emergency”, prompting the World Health Assembly to develop a
Global Action Plan on antimicrobial resistance (World Health Organization
(WHO), 2015a). A number of areas specifically highlighted as antimicrobial
resistance research needs have been documented and many of them are
directly relevant to food irrigation water supply (Wuijts et al., 2017), e.g.,
the identification of treatment technologies that can remove antibiotics and
other antimicrobial agents, their metabolites, antimicrobial resistant micro-
organisms and antimicrobial resistance genes in water.

1.3. Strategies to reduce contamination of fresh produce

To reduce the potential for pathogen contamination of fresh produce, selec-
tion of an appropriate water source and/or pretreatment of irrigation water
is critical (De Keuckelaere et al., 2015). Irrigation practices and distribution
networks must be maintained to the highest possible standards to ensure
that the potential for contamination is minimized. As with drinking water
treatment, a multiple barrier approach is recommended to ensure that irri-
gation water quality remains high even in the event of failure or suboptimal
performance of individual treatment modules (NHMRC & NRMMC,
2011). On-site treatment of irrigation water could represent an important
component of a multiple barrier approach, especially in the context of irri-
gation with recycled water.

2. Treatment technologies for irrigation water

Water treatment for potable use and wastewater treatment for reuse or dis-
charge draw on a range of different treatment technologies, many of which
are potentially applicable to irrigation water treatment. A multitude of fac-
tors can affect the choice of irrigation water treatment technology (Figure
1). Selection criteria for treatment technologies can generally be broken
down into three categories—technological, managerial, and sustainability

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 5



related (Van Haute, Sampers, Jacxsens, & Uyttendaele, 2015). Technological
criteria include the quality of the water source (e.g., microbiological load,
temperature, pH, turbidity, suspended solids, organic matter content),
distribution system characteristics, required water quality (in terms of
physical and microbiological parameters), and water treatment parameters
(i.e., treatment time and dose). Managerial criteria include the upfront
and operational costs, complexity of operation, monitoring, and safety
issues (in terms of chemical handling, storage, production of disinfection
by-products (DBPs) and DBP accumulation in plants). Sustainability crite-
ria cover maintenance, monitoring, environmental considerations and asso-
ciated costs.
Generally, treatment approaches can be separated into clarification and

disinfection processes. Clarification processes can be classified as follows:
physical/mechanical methods, like screening, slow sand filters and

Figure 1. Factors affecting irrigation water quality and selection of water treatment processes
to improve the microbial safety of fresh produce. ARGs: antimicrobial resistance genes; ARMs:
antimicrobial resistant microorganisms; DBPs: disinfection byproducts.

6 C. E. DANDIE ET AL.



membrane filtration treatment; biological methods, such as biofilters; and
chemical methods, such as coagulation and flocculation. Disinfection proc-
esses can involve the application of chemicals, such as chlorine, ozone
(O3), peroxyacetic acid (PAA), or hydrogen peroxide (H2O2), or might be
based on non-chemical disinfection methods like ultraviolet (UV)
irradiation.
Traditional treatment technologies and potential but largely untested

treatment technologies for irrigation water are outlined below and the
advantages and disadvantages of each process are summarized in Tables 2
and 3. As the scientific literature about on-site disinfection of irrigation
water is rather limited and generally targeted toward plant pathogens rather
than human pathogens (Raudales, Parke, Guy, & Fisher, 2014), this review
also draws on parallel literature and examples from other applications such
as potable water and wastewater treatment when necessary.

2.1. Traditional water treatment technologies

The advantages and disadvantages of traditional water treatment technolo-
gies are summarized in Table 2 and there have been several recent reviews
covering many of these technologies in detail (Chahal et al., 2016; Hai,
Riley, Shawkat, Magram, & Yamamoto, 2014; Hoslett et al., 2018; Jhaveri &
Murthy, 2016; Kitis, 2004; Majsztrik et al., 2017; Mart�ınez, P�erez-Parra, &
Suay, 2011; Raudales et al., 2014; Scarlett et al., 2016; Yang, Li, Huang,
Yang, & Li, 2016). Chlorination and UV irradiation are widely applied,
mostly because of their low relative cost and convenient application.
Chlorination can be applied in gaseous form (Cl2) or as hypochlorite

(OCl–) in either liquid or tablet form; it is well characterized, economical
and effective against a broad range of pathogens. Optimum treatment con-
ditions occur at pH 6, where the active form of undissociated hypochlorous
acid is most prevalent. Hypochlorite treatment is relatively easy to imple-
ment for irrigation systems and has been widely applied in large-scale irri-
gation water treatment (Allende & Monaghan, 2015; Gil et al., 2015;
Suslow, 2010). The disadvantages of chlorine treatment are mostly associ-
ated with the formation of DBPs, whose formation could be greater in irri-
gation water with high organic matter content, which would also have a
high chlorine demand.
UV treatment efficacy can be substantially affected by water quality, tur-

bidity and flow rate. Turbidity can reduce the penetration of UV irradi-
ation, thus prefiltration or the use of thin films is required. Because of the
lack of residual, there is significant potential for regrowth of pathogens
after UV treatment, via photoreactivation mechanisms. UV is certified for

CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 7
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use in organic treatment regimens and largely used in conventional closed
greenhouse systems (Dorais et al., 2016).
All currently available technologies have several advantages and disad-

vantages (Table 2), such that it is difficult to provide generalized recom-
mendations. The main advantages of the physical/mechanical treatments is
that they do not form DBPs; disadvantages include the lack of residual dis-
infectant, and the requirement for pretreatment to reduce the potential for
clogging with filtration and increase the efficacy of UV treatment. The
advantages of chemical sanitation treatments are that, in some cases,
residual disinfection can be maintained throughout the distribution system,
thus reducing the risk of pathogen regrowth. The main disadvantages of
chemical sanitation treatments are 1) the formation of DBPs, which are
generally formed during the reaction of oxidants with organic matter; 2)
the maintenance of residual disinfection during storage; 3) the handling
and transport of dangerous chemicals, and 4) the expertise required to run
and maintain complex water treatment technologies. The application of
chemical disinfectants requires careful monitoring and process control to
ensure suitable residual disinfectant concentration and avoid phytotoxicity
(Allende & Monaghan, 2015). In addition, depending on the source, irriga-
tion water might have high organic matter content, meaning that the for-
mation of DBPs and their potential for plant accumulation should be
carefully considered when selecting treatment technologies.
Given the above, the identification and investigation of treatment tech-

nologies that 1) generate no or minimal DBPs; 2) provide some residual
disinfection without resulting in phytotoxicity or increasing the risk of anti-
microbial resistance; and 3) are simple to implement with no additional
chemicals required, is a high priority in a world with increasing regulation
of irrigation water and food production. The potential for point-of-use
water treatment is also appealing, so that storage/transfer time is minimized
and the water is of the highest quality directly prior to crop application in
the field.

2.2. Potential irrigation water treatment technologies

We have identified several treatment technologies (Table 3) that have the
potential to address some of the concerns outlined above, whilst also
acknowledging that in many cases multiple treatment technologies in com-
bination will likely be the best scenario for effective irrigation water treat-
ment. The common feature through all of the methods outlined below is
that they have an element of advanced oxidation processes, because of the
generation of reactive oxygen species (ROS), particularly hydroxyl radicals
(HO�), for the degradation/oxidative attack on organic material including

10 C. E. DANDIE ET AL.
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pathogenic microorganisms. The HO� molecule has the highest oxidizing
potential of all oxidizing agents used in water treatment (Deng &
Zhao, 2015).

2.2.1. Hydrodynamic cavitation
Hydrodynamic cavitation (HC) is a technique with a range of potential
applications in water treatment and environmental remediation (Zupanc
et al., 2019). First characterized in the 19th century, research has shown
that HC treatment can generate localized high temperature and pressure
hot spots under nearly ambient ‘bulk’ conditions. Previously, ultrasound
was the main method used for producing cavitation but the adoption by
industry has been poor because of the cost and extensive expertise required
to operate the equipment successfully. HC is a cheaper and simpler alterna-
tive than the ultrasound-based process; the cavitation is produced by the
rapid constriction and subsequent expansion of a liquid through a Venturi
or orifice plates under controlled conditions (Ciriminna, Albanese,
Meneguzzo, & Pagliaro, 2016; Dular et al., 2016). As the fluid flows through
the constriction, HC occurs in regions where the (hydro)static pressure
drops below the vapor pressure of water, causing evaporation and the forma-
tion of vapor bubbles (Figure 2). On return to regions of normal static pres-
sure, vapor re-condenses and cavitation bubbles collapse, leading to the
formation of very short lived (ms) but also very aggressive physico-chemical
microenvironments characterized by very high temperature (>1,500 �C),
pressure (>69MPa), and turbulence (100m s�1 micro jets; Tao, Cai, Huai,
Liu, & Guo, 2016), all while the bulk water environment remains at ambient
conditions. Reactive oxygen species (ROS; including HO� and HO2

� radi-
cals), while generated during cavitation, can also be added (H2O2, O3) to
further enhance organics removal during water treatment applications
(Jusoh, Aris, & Talib, 2016; Raut-Jadhav et al., 2016; Tao et al., 2016).
Research has shown the potential beneficial uses of HC for remediation

of contaminated waters, with applications including: elimination of refrac-
tory organic pollutants (Petkov�sek et al., 2013; Tao et al., 2016); disinfec-
tion and pathogen destruction (Dular et al., 2016; Li, Song, & Yu, 2014;
Tao et al., 2016; Torabi Angaji & Ghiaee, 2015); removal of oxyanions (As,
Se) and pharmaceuticals (Zupanc et al., 2013, 2014); and recovery of base/
precious metals from mine waters (Kirpalani, Singla, Lotfi, &
Mohapatra, 2016).
HC can be used as a stand-alone process or in conjunction with UV

(Zupanc et al., 2013), and H2O2 treatments (Rajoriya, Carpenter, Saharan
Virendra, & Pandit Aniruddha, 2016). The main drawback of this treat-
ment technology is the lack of residual disinfection, which might mean that
it is best used in combination with another form of disinfection, or

12 C. E. DANDIE ET AL.



implemented as a point-of-use water treatment. Also, given the paucity of
reports in the literature, various issues such as the potential for clogging at
the constriction point and the durability of the cavitation chamber need to
be considered. On the other hand, the simple reactor design, easy oper-
ation, high energy efficiency and scalability have made this technology
attractive for deployment (Tao et al., 2016). The review by Zupanc et al.
(2019) summarized recent research on the effects of cavitation on a range
of organisms, including bacteria (both Gram negative and Gram positive),
cyanobacteria, algae, fungi, yeast and viruses, whilst also highlighting the
many limitations of research in this area. Despite the potential of this tech-
nology, much research is required to optimize HC treatment for application
to irrigation water and ensure optimal pathogen inactivation.

2.2.2. Electrolyzed oxidizing (EO) water
EO water is obtained through the electrolytic treatment of brine (water
containing NaCl or KCl salts; Bakhir, 1985). In the presence of chloride,

Figure 2. Principles of hydrodynamic cavitation. Formation and collapse of vapor bubbles from
liquids in orifices or Venturi occur rapidly under very high temperature and high pressure
changes, resulting in very high energy densities and generating hydroxyl radicals, leading to
pathogen destruction.
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active chlorine (sodium hypochlorite or hypochlorous acid) and ROS (O3,
H2O2) are formed, which are toxic to microorganisms (Figure 3). The
resulting concentrated solution (300–500mg l�1 active chlorine) can then
be diluted into water for disinfection treatment. Electrolysis in a 2-chamber
system generally results in both an acidic anolyte and an alkaline catholyte,
while a 4-chamber system produces a pH-neutral anolyte, NEW
(Bohnstedt, Surbeck, & Bartsch, 2009; Ferro, 2015; Migliarina & Ferro,
2014; Quadrelli & Ferro, 2010).
The main active component in the disinfection activity of EO water is

free chlorine. ROS are also produced but their action is limited by their
short half-life. The EO water activity will largely depend on the pH, oxida-
tion reduction potential (ORP) and available chlorine concentration
(Rahman, Khan, & Oh, 2016). Similar to traditional chlorination treat-
ments, the optimal activity of free chlorine generated in the electrolytic
process occurs when the pH of the EO water is around 6. Of the various
types of EO water available, NEW (pH 6.5–7.5) is arguably the most prom-
ising as it contains predominantly HOCl. This compound is uncharged and
poorly solvated by water molecules and as such it is able to penetrate

Figure 3. Schematic representation of the abilities of hypochlorous acid (HOCl) and hypochlor-
ite (ClO–) to kill Gram-positive and Gram-negative bacteria. The potent activity of HOCl is due
to its dual cidal action on bacterial cells: HOCl is electrically neutral and can passively diffuse
through the cell wall and plasma membrane into the cytoplasm where it attacks constituents
including nucleic acids, proteins and lipids. HOCl is also able to directly destroy the cell wall
and plasma membrane through its oxidizing action. However, ClO– is unable to penetrate the
cell and only exerts its cidal action on the bacterial cell surface.
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bacterial cell walls and oxidize polysaccharides (Bonfatti et al., 2000). EO
waters with extremes of pH are likely to damage infrastructure and cause
phytotoxicity and are therefore less suitable for agricultural applications.
Several studies have described the activity of EO waters against suspen-

sions of target human pathogens (E. coli, Salmonella spp. and Listeria spp.;
Supplementary information Table S1) where substantial log reductions in
viable microorganisms were obtained with treatment under a range of con-
ditions of exposure time, pH, temperature, available chlorine and ORP
(Rahman et al., 2016). However, there are limited published applications of
the use of EO technology in treating irrigation water. Grech and
Rijkenberg (1992) found that micro-emitter-based irrigation to treat citrus
root pathogens with acidic EO water at 40–50 mg ml�1 active chlorine did
not result in chlorine-induced phytotoxicity in field-grown plants.
Similarly, the use of acidic EO water as a foliar spray (free chlorine of
54–71mg l�1) on a variety of bedding plants grown under greenhouse con-
ditions demonstrated very little to no phytotoxicity to the plants while
exhibiting rapid killing of pathogenic fungi such as powdery mildews and
gray molds (Buck, van Iersel, Oetting, & Hung, 2003). Zarattini, De
Bastiani, Bernacchia, Ferro, and De Battisti (2015) reported that the use of
NEW at up to 500mg l�1 on tobacco plants and apple trees produced no
phytotoxic effects but unexpectedly triggered the molecular defenses of
plants. NEW was effective at inactivating norovirus, showing >5-log reduc-
tion in suspension with NEW at 250mg/l free chlorine, but increasing
organic load or reduced NEW concentrations were less effective at reducing
the viral load (Moorman, Montazeri, & Jaykus, 2017).
Similar to other chlorination treatments, organic matter has a detrimen-

tal effect on the efficacy of EO water (Jo, Tango, & Oh, 2018; Stevenson,
Cook, Bach, & McAllister, 2004) and can result in the formation of DBPs,
although few studies have investigated this in detail (L�opez-G�alvez,
Andujar, et al., 2018). Chlorates can also be produced during the electroly-
sis process itself; this can be controlled by the choice of electrode material,
electrolyte composition, applied current, pH and temperature (L�opez-
G�alvez, Andujar, et al., 2018). As an alternative to traditional chlorination
treatments, the technology is easy to implement and safe to use, with no
dangerous chemicals required; however, the production of DBPs is still a
concern and further research is required to determine the type and levels
of DBPs produced and their potential accumulation in plants.

2.2.3. Electrochemical disinfection
Electrochemical disinfection is achieved by passing an electric current
through the water under treatment, using suitable electrodes, without the
addition of exogenous salts (Kraft, 2008). At the phase boundary between
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the electrodes and the water, the electric current leads to the electrochem-
ical production of disinfecting species from the water itself (for example,
ROS) or from species dissolved in the water (most notably chloride is oxi-
dized to free chlorine; Figure 4; Kerwick, Reddy, Chamberlain, & Holt,
2005). Sufficient free chlorine can be produced to efficiently disinfect water
even at low chloride concentrations (less than 100mg l�1; Kraft, 2008). The
disinfection efficacy of the electrochemical approach is thought to be higher
than that of chlorination due to the formation of ROS such as hydroxyl
radicals (�OH), atomic oxygen (�O), H2O2, and O3 (Delaedt et al., 2008;
Diao, Li, Gu, Shi, & Xie, 2004). Yet, the short lifetime of most of the ROS
in solution means that they are only active inside the electrochemical
reactor. While most disinfecting agents are produced at the anode, H2O2

may also be produced at the cathode, as a product of oxygen reduction
(Stoner, Cahen, Sachyani, & Gileadi, 1982).
The inactivation efficacy of electrochemical disinfection systems depends

on several factors, including the electrochemical cell configuration, elec-
trode material, water composition, the nature of the target microorganism,
flow rate and current density (Jeong, Kim, & Yoon, 2009; Mart�ınez-Huitle
& Brillas, 2008). The main process leading to electrochemical water disin-
fection relies on the electrosynthesis of disinfecting agents, however other
phenomena such as the electrosorption of bacteria on the electrode surface
(with consequent direct interaction), electrocution, and electroporation
might play a role in the process (Matsunaga, Nakasono, Kitajima, &

Figure 4. Reactions that occur at the anode and cathode during electrochemical disinfection of
water. ROS: reactive oxygen species.
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Horiguchi, 1994; Matsunaga, Okochi, & Nakasono, 1995; Nakasono,
Nakamura, Sode, & Matsunaga, 1992). After electrosorption, inactivation of
microorganisms can result from the direct electrochemical oxidation of
intracellular coenzyme-A, leading to decreased respiration and consequent
cell death (Matsunaga et al., 1992). Electrochemical treatment was shown
to result in oxidation of viral capsid proteins, leading to loss in structural
integrity and viral inactivation (Shionoiri, Nogariya, Tanaka, Matsunaga, &
Tanaka, 2015).
An interesting feature of the electrochemical disinfection approach is

that the local concentration of the active agents (i.e., within the diffusion
layer that forms at each electrode surface) can exceed the average concen-
tration found in the water leaving the reactor by one or two orders of mag-
nitude (Stoner et al., 1982). Consequently, the local concentration can be
high enough to destroy highly resistant microorganisms, even if the con-
centration of active species in the treated water is kept at a low level.
When compared with chemical disinfection methods, electrochemical water
disinfection has the advantage that no transport, storage or dosage with
disinfectants is required. In addition, the disinfection strength can be
adjusted according to the on-site demand by adjusting the current. The
technology is easy to install and could be integrated into irrigation systems
where required. While electrochemical water disinfection has great potential
for point-of-use irrigation water treatment, the amount of chloride ions
needed, the effect of the water pH, temperature, presence of suspended sol-
ids, microbiological load, high organic matter, nature of the electrode
material and the potential to produce DBPs need to be carefully evaluated.
De Battisti, Formaglio, Ferro, Al Aukidy, and Verlicchi (2018) observed the
formation of chlorate and perchlorate during electrochemical disinfection
of groundwater, but that the concentrations of these DBPs was lower than
the appropriate guideline values.

3. Other considerations in the choice of irrigation water
treatment methods

There are many other issues that should be considered when choosing an
appropriate irrigation water treatment method. These include potential
health risks such as antimicrobial resistance and DBP accumulation, and
application concerns such as cost, water quality and application methods.
The treatments described in this review have generally focused on bacter-

ial pathogens, however, the control and treatment of other pathogen types
is important. Viral pathogens such as hepatitis A and norovirus have been
associated with several recent outbreaks on fresh or frozen berries and
other fresh produce such as leafy greens and salads (Chatziprodromidou,
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Bellou, Vantarakis, & Vantarakis, 2018). Viral pathogens can be introduced
to fresh produce during preharvest operations (from contaminated irriga-
tion water) or during postharvest manipulation (from infectious food han-
dlers or contaminated process/washing water). Thus the role of irrigation
water in virus transmission and the efficacy of the disinfection treatments
investigated in this review against viral pathogens should be an important
focus of future research (Hedberg, 2016).
Disinfection is a key component in successfully controlling pathogen

populations in water but has also been linked in some studies to the selec-
tion of antimicrobial resistance (Rizzo et al., 2013) and reduced efficacy/
increased resistance over time. Recent studies have implicated both DBPs
and residual disinfectants in the induction of antimicrobial resistance and
horizontal transfer of antimicrobial resistance genes (Li & Gu, 2019).
Multidrug resistant opportunistic and human pathogens are an emerging
worldwide threat to human health that can be transmitted through a var-
iety of sources, including as foodborne pathogens (Baker, Thomson, Weill,
& Holt, 2018). These risks should be carefully considered in the risk–bene-
fit analysis of any proposed disinfection strategy, particularly where this is
linked directly to human food.
The accumulation of DBPs in plants and potential health effects also

need to be carefully considered (Dannehl, Schuch, Gao, Cordiner, &
Schmidt, 2016; L�opez-G�alvez, Andujar, et al., 2018) and this is an area that
would benefit from more research. Dannehl et al. (2016) found that using
potassium hypochlorite as the disinfectant in a recirculating hydroponic
system, resulted in higher chlorate content in the tomatoes being grown
than the current European maximum residue limit. Similarly, overhead irri-
gation with EO treated water resulted in accumulation of chlorates in let-
tuce to above the maximum residue limit (L�opez-G�alvez, Andujar
et al., 2018).
Cost is obviously an important factor in the decision-making process

(Raudales, Fisher, & Hall, 2017; Van Haute et al., 2015), but because of its
variability at local, national and international scale, it is difficult to draw
broad conclusions. Significant research gaps also exist in terms of the prac-
tical application of water treatment to irrigation water and potential
impacts in the field and beyond. The variability of irrigation water quality
and quantity, crops and scale of production also makes it difficult to iden-
tify an optimal treatment arrangement that will be suitable for all potential
users. For each water source and treatment configuration, the efficacy (in
terms of pathogen reduction) and safety (in terms of DBPs production
and/or accumulation in plants) should be independently verified to ensure
compliance with the relevant guidelines. For instance, water with high tur-
bidity might not be suitable for UV treatment; and water with high
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dissolved organic matter content could be problematic for chlorine treat-
ment because of the potential for DBPs and high chlorine demand, result-
ing in reduced disinfection efficacy. The irrigation method (i.e., drip vs.
overhead) might also considerably affect the risk of pathogen or DBP
uptake from treated water.
Below we provide some perspective on two important considerations for

both human and plant health, which are induction of the viable but non-
culturable (VBNC) state in microbial populations, and the potential effect
of treated waters on soil and plant microbial communities.

3.1. Induction of VBNC microorganisms

Microbial populations can exist in a VBNC state, a survival strategy used
by many Gram-positive and Gram-negative bacteria in response to adverse
environmental conditions (Ferro, Amorico, & Deo, 2018; Ramamurthy,
Ghosh, Pazhani, & Shinoda, 2014). There have recently been several works
published investigating the potential for induction of VBNC cells during
water disinfection processes (Lin, Li, Gu, Zeng, & He, 2016; L�opez-G�alvez,
Gil, Meireles, Truchado, & Allende, 2018; Zhang, Ye, Lin, Lv, & Yu, 2015).
This might be of particular concern in low-quality irrigation waters, where
disinfection efficacy is compromised by organic matter content or other
factors. Hence, investigation of irrigation water disinfection using only con-
ventional microbial culturing techniques might overestimate the efficacy of
the disinfection treatment if VBNC organisms are not specifically consid-
ered. This is because VBNC organisms do not grow when plated on culture
media that would normally support their growth in vitro, rendering them
difficult to detect by conventional means.
VBNC microbes have lipid-rich membranes, tend to be smaller than

their non-VBNC counterparts, exhibit reduced metabolic activity, and dis-
play altered cellular changes including cell leakage, depletion of energy
pools, and altered gene expression and DNA replication (Arzanlou, Chai, &
Venter, 2017; Trevors, Bej, Mojib, van Elsas, & Van Overbeek, 2012).
Importantly, under favorable conditions (such as through expression of a
resuscitation-promoting factor), these organisms can be revived. For
example, it has been shown that L. monocytogenes treated with distilled
water entered into the VBNC state and became virulent after resuscitation
using embryonated eggs (Cappelier, Besnard, Roche, Velge, & Federighi,
2007). It therefore cannot be excluded that VBNC pathogens may be pre-
sent in treated irrigation water and that they may become virulent again at
a later stage. Furthermore, several studies have shown that pathogens may
still exert detrimental effects even when in a VBNC state. For instance,
laboratory-induced VBNC E. coli O157:H7 cells produced Shiga-like toxins
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in a vero-cell microplate cytotoxicity assay, demonstrating a potential
health hazard (Liu, Wang, Tyrrell, & Li, 2010). It has also been demon-
strated that the VBNC state in S. epidermidis contributes to the formation
and persistence of biofilms, resulting in tolerance to multiple antimicrobials
and immune evasion (Cerca et al., 2011).
VBNC bacterial cells can be induced by many factors, including water

sanitation treatments with H2O2 (Arana, Muela, Iriberri, Egea, & Barcina,
1992), chlorination (Oliver, Dagher, & Linden, 2005), high/low temperature
(Patrone et al., 2013; Pawlowski et al., 2011), UV irradiation (Zhang et al.,
2015), peroxide-based disinfectants such as PAA (Park, Lee, Bisesi, & Lee,
2014) and high-pressure CO2 (Zhao, Bi, Hao, & Liao, 2013). A recent study
showed that E. coli O157:H7 treated with acidic (pH 2.7–2.9 or pH 5.6–6.3)
EO water could become VBNC and be resuscitated at available chlorine
concentrations that resulted in no viable counts (30mg l�1; Zhang, Chen,
Xia, Li, & Hung, 2018). Much higher concentrations of available chlorine
(50mg l�1) were required to remove all VBNC cells. Green fluorescent pro-
tein-tagged L. monocytogenes and S. enterica Thompson became VBNC
upon exposure to 12mg l�1 and 3mg l�1 chlorine, respectively (Highmore,
Warner, Rothwell, Wilks, & Keevil, 2018). Thus, it is critical to investigate
whether and under which conditions the various water treatment regimens
induce VBNC cells in a microbial community and whether these organisms
can become active again on crops or fresh produce postharvest. To fully
characterize the induction of VBNC status by the various water treatment
technologies, a combination of macromolecular and cellular techniques
such as real-time PCR (DNA), transcriptomic (RNA) metabolic activity
(protein, lipid, luminescence) measurements, fluorescence-based imaging
flow cytometry, as well as morphometric analyses by transmission and
scanning electron microscopy will be essential.

3.2. Effects of treated irrigation waters on soil and plant microbial
communities

Soil-borne microbes constitute a major proportion of the resident organ-
isms (the “microbiome”) identified on fruit and vegetables. The vast major-
ity of these are not responsible for spoilage but rather act as a “natural
biological barrier” against plant opportunistic pathogens, which are often a
smaller subset of the entire soil microbial community (Andrews & Harris,
2000; Barth, Hankinson, Zhuang, & Breidt, 2009; Janisiewicz & Korsten,
2002). Indeed, it has been shown that an inverse relationship exists between
soil microbial diversity and the survival of an invading pathogen (van Elsas
et al., 2012). Hence, it is important that the irrigation with treated water
does not negatively alter the microbial ecology of soils as this could directly
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influence the plant microbiome (by altering the plant endophytic and phyl-
losphere microbial community) or indirectly by compromising organisms
important for soil health (fertility and biocontrol) and thereby decreasing
the health status of plants.
Many factors contribute to changes in the microbial ecology of soil, vege-

tables and fruits, including soil characteristics, climatic conditions and
agronomic practices (Allende & Monaghan, 2015; Barth et al., 2009;
Becerra-Castro et al., 2015; Berg & Smalla, 2009; Cluff, Hartsock, MacRae,
Carter, & Mouser, 2014; Frenk, Hadar, & Minz, 2014; Zheng et al., 2017).
Irrigation water quality also contributes to changes in microbial commun-
ities in soil and plants, especially in copiotrophic environments/ecosystems.
For instance, Ma~nas, Castro, and de Las Heras (2009) reported significant
increases in fecal streptococci, Salmonella spp., sulfite-reducing Clostridium
spp. as well as total and fecal coliform counts in lettuce irrigated with min-
imally treated wastewater (using trickling filters), relative to control plants
receiving potable water (groundwater). These findings indicate the potential
deleterious effects of microbiologically impacted irrigation water on fresh
produce. However, the use of tertiary water treatment regimes, such as final
disinfection using UV light, chlorination and/or ultrasound, have been
shown to effectively remove indicator microorganisms and pathogens to
below limits of detection at the point of discharge (Pachepsky, Shelton,
McLain, Patel, & Mandrell, 2011; Villanueva, Luna, Gil, & Allende, 2015).
Therefore, it is critically important that good agricultural practices are
implemented before, during and after harvest to maintain soil health and
promote a balanced and functioning microbial community. These practices
are defined in the Codex General Principles on Food Hygiene (Codex
Alimentarius Commission, 2003) and aim at maximizing the quality of the
crop harvested. However, a search through the literature reveals very few
original manuscripts and/or reviews pertaining to changes in the microbial
ecology of soil and foliar tissues after irrigation with treated irrigation
water. Chevremont, Boudenne, Coulomb, and Farnet (2013) documented
the changes in microbiological properties of soils irrigated with UV-LED
treated wastewaters over a one-year period. When compared with watering
with untreated wastewater, watering with the UV-LED treated wastewater
resulted in decreased occurrence of fecal coliforms, and showed no deleteri-
ous effects on overall microbial diversity and function. Truchado, Gil,
Suslow, and Allende (2018) recently investigated the effect of a low residual
ClO2 concentration (approx. 0.25mg l�1) in irrigation water on the soil
microbiome and baby spinach phyllosphere bacterial community. Next gen-
eration sequencing demonstrated that while the composition of these
microbiomes was not significantly altered, the relative abundance of specific
bacterial genera was influenced. In particular, the relative abundance of
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Pseudomonaceae and Enterobacteriaceae significantly decreased when the
water was treated with ClO2.

Our overall knowledge of how the microbial ecosystems in the soil and
on the surface of each produce type are influenced by the treatment of irri-
gation water, especially when disinfectant residues are present, is still very
limited. Considering the importance of the soil and plant microbiomes to
directly and indirectly control the occurrence of both human and plant
pathogens, more research effort is needed in this regard.

4. Conclusions

The need to utilize water bodies and sources with sub-optimal microbio-
logical characteristics is anticipated to increase in line with increased
demand for water by the agricultural sector and society in general. In the
case of fresh produce, it is of paramount importance that the microbio-
logical quality of the water is optimized to minimize the potential for
pathogen outbreaks. A significant number of treatment technologies are
available for the treatment of irrigation water and they include both phys-
ical and chemical treatments. At present, the use of sodium hypochlorite
and UV disinfection are widely applied because of both cost and conveni-
ence. However, other treatments such as EO water and electrochemical
water disinfection (which do not require addition of chemicals) could pro-
vide interesting alternatives. Hydrodynamic cavitation should also be con-
sidered and further investigated as, in addition to not requiring chemicals
due to it being a “mechanical treatment process,” it may also mitigate dis-
infection-induced selection of resistant bacteria (which are often patho-
genic), particularly if it is proven to also destroy resistance genes and not
induce the VBNC state. As noted above, however, it is generally advisable
that multiple treatments are used in conjunction in high-risk settings (e.g.,
salad crop production), in order to ensure continuity of high water quality
even in the event of total or partial failure of individual treatment barriers.
We propose the concept of multistep irrigation water treatment that could
be implemented for on-farm sanitation, which could vary depending on the
physico-chemical parameters of the water to be treated, level of contamin-
ation and the size and cost implications of the approach to be adopted.
While there is a significant body of work on the relative efficacy of vari-

ous water treatments for production of clean water, there is little direct
information on the microbial profiling of irrigation water. More critically,
there is little data on the effects of microbiologically impacted irrigation
water on the quality of fresh produce or its effects on soil microbial com-
munities. Direct evidence, via specific in-field experiments and advanced
molecular and cellular techniques, showing the effects of the various
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irrigation treatment regimens on the VBNC state as well as their effects on
the dynamics of soil and microbial communities, particularly on high-risk
vegetables, is warranted and paramount. Equally important is a thorough
evaluation of the long-term effects and benefits of the irrigation treatment
methods on soil sustainability, produce quality and overall farm productiv-
ity. Moreover, judicious implementation of environmentally-friendly treat-
ment technologies that can effectively remove antibiotics and other
antimicrobial agents, their metabolites, antimicrobial resistant microorgan-
isms and antimicrobial resistance genes in irrigation water will improve the
overall safety and value of minimally-processed foods.
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Supporting Information 

Table S1: Efficacy of electrolyzed oxidizing water treatments on specific pathogens in suspension 

Pathogen Matrix/Active agent Dose/contact time Log reduction Reference 

Escherichia coli 
PBS/ 

SAEW (20:1) 

5–10 min; 60 ppm ACC; 

ORP +910 mV; pH 6.4; 

volume ratio 20:1 

~8 log CFU/mL Ye et al 2017 

E. coli 
TSB/ 

NEW (0.1/9.9 mL) 

10 min; 20–100 ppm total 

residual chlorine; ORP 

+800-900 mV; pH 6.3–

6.5; 25°C 

6.1–6.7 log CFU/mL Guentzel et al 2008 

E. coli 
0.85% NaCl/ 

LcEW (1/9 mL) 

1 min; 5–10 mg/L ACC; 

ORP +660–700 mV; pH 

6.8–7.4  

4.9–5.3 log CFU/mL Rahman et al 2012 

E. coli O157:H7 
aCulture/sterile 

water/NEW (1/1/8 mL) 

5 min; 89 mg/L ACC; pH 

7.99–8.19; ORP +745–

771 mV; 23°C 

>6 log CFU/mL Deza et al 2003 

E. coli (range of strains) NECAW 
30 s; 100 ppm FAC; ORP 

+864 mV; pH 7.0 
>5 log CFU/mL Yang et al 2013 

Salmonella (range of 

strains) 
NECAW 

30 s; 100 ppm FAC; ORP 

+864; pH 7.0  
>5 log CFU/mL Yang et al 2013 

Salmonella enteritidis 
Culture/sterile water/NEW 

(1/1/8 mL) 

5 min; 89 mg/L ACC; pH 

7.99–8.19; ORP +745–

771 mV; 23°C 

>6 log CFU/mL Deza et al 2003 

Listeria monocytogenes 
Culture/sterile water/NEW 

(1/1/8 mL) 

5 min; 89 mg/L ACC; pH 

7.99–8.19; ORP +745–

771 mV; 23°C 

>6 log CFU/mL Deza et al 2003 



Listeria monocytogenes 

(range of strains) 
PW/NECAW (1/99 mL) 

30 s; 50–100 ppm FAC; 

ORP +824–864; pH 7.0 
>5 log CFU/mL Yang et al 2013 

Listeria innocua 
Cells resuspended in 

NEW 

10 min; 150 ppm ACC; 

ORP +840 mV; pH 6.9; 

23°C 

2.7 log CFU/mL Feliciano et al 2012 

Listeria innocua 
Cells resuspended in 

AEW 

10 min; 150 ppm ACC; 

ORP +1100 mV; pH 2.7; 

23°C 

4.7 log CFU/mL Feliciano et al 2012 

Listeria monocytogenes 
TSB/ 

NEW (0.1/9.9 mL) 

10 min; 20–100 ppm total 

residual chlorine; ORP 

+800–900 mV; pH 6.3–

6.5; 25°C 

6.1–6.7 log CFU/mL Guentzel et al 2008 

Listeria monocytogenes 
0.85% NaCl/ 

LcEW (1/9 mL) 

1 min; 5–10 mg/L ACC; 

ORP +660–700 mV; pH 

6.8–7.4 

5.2–5.6 log CFU/mL Rahman et al 2012 

Listeria monocytogenes 
0.85% NaCl/NEW (1/9 

mL) 

30 s; 20 ppm total 

chlorine concentration; 

ORP +1100 mV; pH 7.0; 

30°C 

≥5 log CFU/mL 
Arevalos-Sanchez et al 

2012 

NEW: neutral electrolyzed water; AEW: acidic electrolyzed water; SAEW: slightly acidic electrolyzed water; CFU: colony forming unit; ACC: 

available chlorine concentrations; NECAW: neutral electrochemically activated water; LcEW: low concentration electrolyzed water; ORP: 

oxidation-reduction potential; PBS: phosphate buffered saline; TSB: trypticase soy broth; PW: peptone water 

a details of culture medium not provided. 
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